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Abstract
We discuss certain analogies between quantization and discretization of
classical systems on manifolds. In particular, we will apply the quantum
dynamical entropy of Alicki and Fannes to numerically study the footprints of
chaos in discretized versions of hyperbolic maps on the torus.

PACS numbers: 05.45.−a, 05.45.Mt, 89.70.+z

1. Introduction

Classical chaos is associated with motion on a compact phase space with high sensitivity to
initial conditions: trajectories diverge exponentially fast and nevertheless remain confined to
bounded regions [1–3].

In discrete times, such behaviour is characterized by a positive Lyapounov exponent
log λ, λ > 1 and by a consequent spreading of initial errors δ such that, after n timesteps,
δ �→ δn � δλn. Exponential amplification on a compact phase space cannot grow indefinitely;
therefore, the Lyapounov exponent can only be obtained as

log λ := lim
t→∞

1

n
lim
δ→0

log

(
δn

δ

)

that is by first letting δ → 0 and only afterwards n → ∞.
In quantum mechanics non-commutativity entails absence of continuous trajectories or,

semi-classically, an intrinsic coarse graining of phase space determined by Planck’s constant
h̄: this forbids δ (the minimal error possible) to go to zero. Thus, if chaotic behaviour is
identified with log λ > 0, then it is quantally suppressed, unless, performing the classical limit
first, we let room for δ → 0 [4].

In discrete classical systems, one deals with discretized versions of continuous classical
systems or with cellular automata [5–7] with a finite number of states. In this case, roughly
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speaking, the minimal distance between two states or configurations is strictly larger than
zero; therefore, the reason why log λ is trivially zero is very similar to the one encountered in
the field of quantum chaos, its origin being now not in non-commutativity but in the lack of a
continuous structure. Alternative methods have thus to be developed in order to deal with the
granularity of phase space [5–9].

An entropic approach is likely to offer a promising perspective. For sufficiently smooth
classical continuous systems, the exponential spreading of errors is equivalent to a net entropy
production, better known as Kolmogorov dynamical, or metric, entropy [3]. The phase space is
partitioned into cells by means of which any trajectory is encoded into a sequence of symbols.
As time goes on, the richness in different symbolic trajectories reflects the irregularity of the
motion and is associated with strictly positive dynamical entropy [10].

A frequency approach to the numerical evaluation of the entropy production has recently
been applied in the discretized version of various chaotic continuous classical dynamical
systems [11]. In this paper, we suggest a different strategy: motivated by the similarities
between quantization and discretization of continuous classical dynamical systems, we propose
to use the quantum dynamical entropy recently introduced by Alicki and Fannes [12, 13], which
we shall refer to as ALF-entropy.

The ALF-entropy is based on the algebraic properties of dynamical systems, that is on
the fact that, independently of whether they are commutative or not, they are describable by
suitable algebras of observables, their time evolution by linear maps on these algebras and
their states by expectations over them.

As such, the ALF-entropy applies equally well to classical and quantum systems, and
reduces to the Kolmogorov entropy in the former case. In particular, it has been shown that it
allows a quite straightforward calculation of the Lyapounov exponents of Arnold cat maps on
D-dimensional tori [14].

In this paper we aim at showing how the ALF-entropy may be of use in a discrete classical
context, precisely when two-dimensional cat maps are forced to live on a square lattice with
spacing 1

N
(N integer), with particular focus upon the emergence of the continuous behaviour

when N �−→ ∞.
In quantum mechanics, the classical limit is achieved when h̄ → 0. Analogously, in the

case of discrete classical systems, by letting the minimal distance between states go to zero,
one might hope to recover a well-defined continuous dynamical system, perhaps a chaotic
one. Also, very much as in the semi-classical approximation, one expects the possibility of
mimicking the behaviour of discrete systems by means of that of their continuous limits and
vice versa. However, this is possible only up to a time τB , called breaking-time [4]; it can
be heuristically estimated as the time when the minimal error permitted, δ, becomes of the
order of the phase space bound �. Therefore, when, in the continuum, a Lyapounov exponent
log λ > 0 is present, the breaking time scales as τB = 1

log λ
log �

δ
.

In the following, we shall consider discrete dynamical systems obtained by discretizing a
subclass of the unitary modular group of (two-dimensional) toral automorphisms [3] containing
the well-known Arnold cat maps. We shall provide

• the algebraic setting for the continuous limit N �−→ ∞;
• the technical framework to construct the ALF-entropy and numerical shortcuts to compute

it;

and study

• the behaviour of the entropy production and how the breaking-time τB is reached in
hyperbolic systems;

• the differences in behaviour between hyperbolic and elliptic systems;
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• the distribution of eigenvalues of the multitime correlation matrix used in computing the
ALF-entropy;

• the behaviour of the entropy production in the case of sawtooth maps [15–17] which are
discontinuous on the two-dimensional torus.

2. Automorphisms on the torus

Usually, continuous classical motion is described by means of a measure space X , the phase
space, endowed with the Borel σ -algebra and a normalized measure µ, µ(X ) = 1. The
‘volumes’ µ(E) = ∫

E
dµ(x) of measurable subsets E ⊆ X represent the probabilities that a

phase point x ∈ X belongs to them. By specifying the statistical properties of the system, the
measure µ defines a ‘state’ of it.

In such a scheme, a reversible discrete time dynamics amounts to an invertible measurable
map T : X �→ X such that µ ◦ T = µ and to its iterates {T j }j∈Z. Phase trajectories passing
through x ∈ X at time 0 are then sequences {T jx}j∈Z [3].

Classical dynamical systems are thus conveniently described by triplets (X , µ, T ); in the
following, we shall concentrate on triplets (X , µ, Tα), where

X = T
2 = R

2/Z
2 = {x = (x1, x2) (mod 1)} (1a)

Tα

(
x1

x2

)
=
(

1 + α 1
α 1

)(
x1

x2

)
(mod 1) α ∈ Z (1b)

dµ(x) = dx1 dx2. (1c)

Remark 2.1.

(i) Since det (Tα) = 1, the Lebesgue measure defined in (1c) is invariant for all α ∈ Z;
(ii) The eigenvalues of

( 1+α 1
α 1

)
are α + 2 ±

√
(α + 2)2 − 4)/2. They are conjugate complex

numbers if α ∈ [−4, 0], while one eigenvalue λ is greater than 1 if α �∈ [−4, 0]. In this
case, distances are stretched along the direction of the eigenvector |e+〉, Sα|e+〉 = λ|e+〉
and contracted along that of |e−〉, Sα|e−〉 = λ−1|e−〉. For such α all periodic points are
hyperbolic [17].

(iii) T1 = ( 2 1
1 1

)
is the Arnold cat map [3]. Then, T1 ∈ {Tα}α∈Z ⊂ SL2(T

2) ⊂ GL2(T
2) ⊂

ML2(T
2) where ML2(T

2) is the subset of 2 × 2 matrices with integer entries, GL2(T
2) the

subset of invertible matrices and SL2(T
2) is the subset of matrices with determinant one.

(iv) The dynamics generated by Tα ∈ SL2(T
2) is called the unitary modular group [3] (UMG

for short).

For future comparison with quantum dynamical systems, we adopt an algebraic point of view
and argue in terms of classical observables, precisely in terms of complex continuous functions
f on X = T

2.

• These functions form a C∗ algebra AX = C0 (X ) with respect to the topology given by
the uniform norm ‖f ‖0 = supx∈X |f (x)|.

• The Lebesgue measure µ defines a state ωµ on AX which evaluates mean values of
observables via integration:

f �→ ωµ(f ) :=
∫
X

dx f (x). (2)
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• The discrete-time dynamics Tα : X �→ X generates the discrete group of automorphisms
�

j
α : AX �→ AX , given by

�j
α(f )(x) = f

(
Sj

α(x)
)

j ∈ Z (3)

that preserve the state, ωµ ◦ �
j
α = ωµ.

Definition 2.1. The dynamical systems (X , µ, Tα) will be identified by the algebraic triplets
(AX , ωµ,�α).

2.1. ‘Weyl’ discretization

In the following, we shall proceed to a discretization of the systems introduced in the previous
section and to the study of how chaos emerges when the continuous limit is being reached.

Roughly speaking, given an integer N, we shall force the continuous classical systems
(AX , ωµ,�α) to live on a lattice LN ⊂ T

2 given by

LN :=
{ p

N

∣∣∣p ∈ (Z/NZ)2
}

(4)

where (Z/NZ) denotes the residual class (mod N ).
A good indicator of chaos in continuous dynamical systems is the metric entropy of

Kolmogorov [3] (see section 3). We can compare discretization of classical continuous
systems with quantization; in this way, we can profitably use a quantum extension of the
metric entropy which will be presented in section 4. To this aim, we define a discretization
procedure resembling Weyl quantization [18, 19]; in practice, we will construct a ∗morphism
JN,∞ from AX = C0 (X ) into the Abelian algebra DN2C of N2 × N2 matrices which are
diagonal with respect to a chosen orthonormal basis {|� 〉}�∈(Z/NZ)2 . The basis vectors will
be labelled by the points of a square grid of lattice spacing 1

N
with 0 � 	i � (N − 1) (N

identified with 0) superimposed onto X = T
2.

In order to define JN,∞, we use Fourier analysis and restrict ourselves to the ∗subalgebra
Wexp ∈ AX generated by the exponential functions

W(n)(x) = exp(2π in ·x) (5)

where n = (n1, n2) ∈ Z
2 and n ·x = n1x1 + n2x2. The generic element of Wexp is

f (x) =
∑
n∈Z

2

f̂ nW(n)(x) (6)

with finitely many coefficients f̂ n = ∫ ∫X dx f (x) e−2π inx different from zero.
On Wexp, formula (2) defines a state such that

ωµ(W(n)) = δn,0. (7)

Further, since n · (Tαx) = (
T tr

α n
) ·x, the automorphisms (3) map exponentials into

themselves:

�α(W(n)) = W
(
T tr

α ·n) T tr
α =

(
1 + α α

1 1

)
. (8)

Remark 2.2. The latter property no longer holds when α �∈ Z as will be the case in
section 5.2 where we deal with sawtooth maps [15–17].

Following Weyl quantization, we get elements of DN2 out of elements of Wexp by replacing,
in (6), exponentials with diagonal matrices:

W(n) �−→ W̃ (n) :=
∑

�∈(Z/NZ)2

e2π in�/N |�〉〈�| � = (	1, 	2). (9)
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Definition 2.2. We will denote by JW
N,∞, the ∗morphism from the ∗algebra Wexp into the

diagonal matrix algebra DN2(C), given by

Wexp � f �−→ JW
N,∞(f ) :=

∑
n∈Z

2

f̂ nW̃ (n) =
∑

�∈(Z/NZ)2

f

(
�

N

)
|�〉〈�|. (10)

Remark 2.3.

(i) The completion of the subalgebra W∞ with respect to the uniform norm ‖f ‖0 =
supx∈X |f (x)| is the C∗ algebra AX = C0 (X ) [20].

(ii) The ∗morphism JW
N,∞ : Wexp �→ DN2(C) is bounded by

∥∥JW
N,∞
∥∥ = 1. Using the bounded

limit theorem [20], JW
N,∞ can be uniquely extended to a bounded linear transformation

(with the same bound) JN,∞ : AX �−→ DN2(C).
(iii) JN,∞(AX ) = DN2(C).

We go back from DN2(C) to a ∗algebra of functions on X by defining a ∗morphism J∞,N

that ‘inverts’ JN,∞ in the N → ∞ limit. In the Weyl quantization the ‘inverting’ ∗morphism
is constructed by means of coherent states |β(x)〉,x ∈ X , with good localization properties
in X .

Definition 2.3. We will denote by J∞,N : DN2(C) �−→ AX the ∗morphism defined by

DN2(C) � M �−→ J∞,N (M)(x) := 〈β(x)|M|β(x)〉 (11)

where |β(x)〉 are coherent vectors in HN2 = C
N2

.

We now construct a suitable family of |β(x)〉: we shall denote by �·� and 〈·〉 the
integer and fractional parts of a real number so that we can express each T

2 as x =( �Nx1�
N

,
�Nx2�

N

)
+
( 〈Nx1〉

N
,

〈Nx2〉
N

)
. Then we associate x ∈ T

2 with vectors of HN2 as follows:

x �→ |β(x)〉 = λ11(x)|�Nx1�, �Nx2�〉 + λ12(x)|�Nx1�, �Nx2� + 1〉
+ λ21(x)|�Nx1� + 1, �Nx2�〉 + λ22(x)|�Nx1� + 1, �Nx2� + 1〉. (12)

We choose the coefficients λij so that ‖β(x)‖ = 1 and that the map (12) be invertible:


λ11(x) = cos
(

π
2 〈Nx1〉

)
cos
(

π
2 〈Nx2〉

)
λ12(x) = cos

(
π
2 〈Nx1〉

)
sin
(

π
2 〈Nx2〉

)
λ21(x) = sin

(
π
2 〈Nx1〉

)
cos
(

π
2 〈Nx2〉

)
λ22(x) = sin

(
π
2 〈Nx1〉

)
sin
(

π
2 〈Nx2〉

)
. (13)

Therefore, from definitions 2.2 and 2.3 it follows that, when mapping AX onto DN2(C) and
the latter back into AX , we get

f̃ N (x) := (J∞,N ◦ JN,∞)(f )(x) =
∑

�∈(Z/NZ)2

f

(
�

N

)
|〈β(x)|�〉|2

= 1

4

∑
(µ,ν,ρ,σ )∈{0,1}4

cos(πµ〈Nx1〉) cos(πν〈Nx2〉)(−1)µρ+νσ f

×
(�Nx1� + ρ

N
,
�Nx2� + σ

N

)
.

(14)
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Remark 2.4.

(i) From (14), f = f̃ N on the lattice points. Moreover, although the first derivative of (14)
is not defined in the latter, its limit exists there and it is zero; thus, we can extend by
continuity f̃ N to a function in C1(T2) that we will denote again as f̃ N .

(ii) We note that Ran(J∞,N ) is a subalgebra strictly contained in AX ; this is not surprising
and comes as a consequence of Weyl quantization, where this phenomenon is quite typical
[18, 19].

We show below thatJ∞,N ◦JN,∞ approaches 11AX (the identity function inAX ) when N → ∞.
Indeed, a request on any sensible quantization procedure is to recover the classical description
in the limit h̄ → 0; in a similar way, our discretization should recover the continuous system
in the 1

N
→ 0 limit.

Theorem 1. Given f ∈ AX = C0(T2), limN→∞
∥∥(J∞,N ◦ JN,∞ − 11AX

)
(f )
∥∥ = 0.

Proof. Since X = T
2 is compact, f is uniformly continuous on it. Further, denoting

x = �Nx�
N

+ 〈Nx〉
N

, 0 � 〈Nx〉 < 1 implies
∥∥x− �Nx�

N

∥∥→N 0; therefore, for all ε > 0 there exists
Nf,ε such that

N > N̄f,ε �⇒
∣∣∣∣f (x) − f

(�Nx�
N

)∣∣∣∣ < ε

2

uniformly in x. Moreover, according to remark 2.4 (i), f̃ N ∈ C0(T2), thus the previous
inequality holds for f̃ N , too. Since f̃ N = f on �Nx�

N
, it follows that, for sufficiently large N,

|f (x) − f̃ N (x)| �
∣∣∣∣f (x) − f

(�Nx�
N

)∣∣∣∣ +

∣∣∣∣ f̃ N

(�Nx�
N

)
− f̃ N (x)

∣∣∣∣ � ε

uniformly in x. �

3. Kolmogorov metric entropy

For continuous classical systems (X , µ, Tα) such as those introduced in section 2, the
construction of the dynamical entropy of Kolmogorov is based on subdividing X into
measurable disjoint subsets {E	}	=1,2,...,D such that

⋃
	 E	 = X which form finite partitions

(coarse grainings) E .
Under the dynamical maps Tα in (1b), any given E evolves into T

−j
α (E) with atoms

T
−j
α (E	) = {

x ∈ X : T
j
α x ∈ E	

}
; one can then form finer partitions E[0,n−1] whose atoms

Ei0i1···in−1 := Ei0

⋂
T −1

α

(
Ei1

) · · ·⋂ T −n+1
α

(
Ein−1

)
have volumes

µi0i1···in−1 := µ
(
Ei0 ∩ T −1

α

(
Ei1

) · · · ∩ T −n+1
α

(
Ein−1

))
. (15)

Definition 3.1. We shall set i = {i0i1 · · · in−1} and denote by �n
D the set of Dn n-tuples with

ij taking values in {1, 2, . . . , D}.
The atoms of the partitions E[0,n−1] describe segments of trajectories up to time n encoded by
the atoms of E that are traversed at successive times. The richness in diverse trajectories, that
is the degree of irregularity of the motion (as seen with the accuracy of the given coarse-
graining), can be measured by the Shannon entropy [10]

Sµ(E[0,n−1]) := −
∑
i∈�n

D

µi log µi. (16)
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In the long run, E attributes to the dynamics an entropy per unit time-step

hµ(Tα, E) := lim
n→∞

1

n
Sµ(E[0,n−1]). (17)

This limit is well defined [3] and the Kolmogorov entropy hµ(Tα) of (AX , ωµ,�α) is defined
as the supremum over all finite measurable partitions [3, 10]:

hµ(Tα) := sup
E

hµ(Tα, E). (18)

3.1. Symbolic models as classical spin chains

Finite partitions E of X provide symbolic models for the dynamical systems (X , µ, Tα) of
section 2, whereby the trajectories

{
T

j
α x
}

j∈Z
are encoded into sequences {ij }j∈Z

of indices
relative to the atoms Eij visited at successive times j ; the dynamics corresponds to the right-
shift along the symbolic sequences. The encoding can be modelled as the shift along a classical
spin chain endowed with a shift-invariant state [12]. This will help to understand the quantum
dynamical entropy which will be introduced in the next section.

Let D be the number of atoms of a partition E of X , we shall denote by AD the diagonal
D × D matrix algebra generated by the characteristic functions eE	

of the atoms E	 and by
A[0,n−1]

D the n-fold tensor product of n copies of (AD), that is the Dn × Dn diagonal matrix
algebra A[0,n−1]

D := (AD)0 ⊗ (AD)1 · · · ⊗ (AD)n−1. Its typical elements are of the form
a0 ⊗ a1 · · · ⊗ an−1, each aj being a diagonal D × D matrix. Every A

[p,q]
D := ⊗q

j=p(AD)j can
be embedded into the infinite tensor product A∞

D := ⊗∞
k=0(AD)k as

(11)0 ⊗ · · · ⊗ (11)p−1 ⊗ (AD)p ⊗ · · · ⊗ (AD)q ⊗ (11)q+1 ⊗ (11)q+2 ⊗ · · · . (19)

The algebra A∞
D is a classical spin chain with a classical D-spin at each site.

By means of the discrete probability measure {µi}i∈�n
D

, one can define a compatible

family of states on the ‘local’ algebras A[0,n−1]
D :

ρ
[0,n−1]
E (a0 ⊗ · · · ⊗ an−1) =

∑
i∈�n

D

µi(a0)i0i0 · · · (an−1)in−1in−1 . (20)

Indeed, let ρ�N denote the restriction to a subalgebra N ⊆ M of a state ρ on a larger
algebra M . Since

∑
in−1

µi0i1···in−1 = µi0i1···in−2 , when n varies the local states, ρ
[0,n−1]
E

are such that ρ
[0,n−1]
E �A[0,n−2]

D = ρ
[0,n−2]
E and define a ‘global’ state ρE on A∞

D such that
ρE�A[0,n−1]

D = ρ
[0,n−1]
E .

From the Tα-invariance of µ it follows that, under the right-shift σ : A∞
D �→ A∞

D ,

σ
(
A

[p,q]
D

) = A
[p+1,q+1]
D (21)

the state ρE of the classical spin chain is translation invariant:

ρE ◦ σ(a0 ⊗ · · · ⊗ an−1) = ρE ((11)0 ⊗ (a0)1 ⊗ · · · ⊗ (an−1)n)

= ρE(a0 ⊗ · · · ⊗ an−1). (22)

Finally, denoting by |j 〉 the basis vectors of the representation where the matrices a ∈ AD are
diagonal, local states amount to diagonal density matrices

ρ
[0,n−1]
E =

∑
i∈�n

D

µi|i0〉〈i0| ⊗ |i1〉〈i1| ⊗ · · · ⊗ |in−1〉〈in−1| (23)

and the Shannon entropy (16) to the von Neumann entropy

Sµ(E[0,n−1]) = − Tr
[
ρ

[0,n−1]
E log ρ

[0,n−1]
E

] =: Hµ[E[0,n−1]]. (24)
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4. ALF-entropy

From an algebraic point of view, the difference between a triplet (M, ω,�) describing a
quantum dynamical system and a triplet

(
AX , ωµ,�α

)
as in definition 2.1 is that ω and �

are now a �-invariant state, respectively, an automorphism over a non-commutative (C∗ or
von Neumann) algebra of operators.

Remark 4.1. In finite dimension D,M is the full matrix algebra of D × D matrices, the
states ω are given by density matrices ρω, such that ω(X) := Tr(ρωX), while the reversible
dynamics � is unitarily implemented: �(X) = UXU ∗.

The quantum dynamical entropy proposed in [12] by Alicki and Fannes, ALF-entropy for
short, is based on the idea that, in analogy with what one does for the metric entropy, one can
model symbolically the evolution of quantum systems by means of the right-shift along a spin
chain. In the quantum case the finite-dimensional matrix algebras at the various sites are not
diagonal, but, typically, full matrix algebras, that is the spin at each site is a quantum spin.

This is done by means of the so-called partitions of unit, that is by finite sets
Y = {y1, y2, . . . , yD} of operators in a �-invariant subalgebra M0 ∈ M such that

D∑
	=1

y∗
	 y	 = 1 (25)

where y∗
j denotes the adjoint of yj . With Y and the state ω one constructs the D × D matrix

with entries ω(y∗
j yi); such a matrix is a density matrix ρ[Y]:

ρ[Y]i,j := ω(y∗
j yi). (26)

It is thus possible to define the entropy of a partition of unit as (compare (24))

Hω[Y] := − Tr(ρ[Y] log ρ[Y]). (27)

Further, given two partitions of unit Y = (y0, y1, . . . , yD), Z = (z0, z1, . . . , zB), of size D,
respectively B, one gets a finer partition of unit of size BD as the set

Y ◦ Z := (y0z0, . . . , y0zB; y1z0, . . . , y1zB; . . . ; yDz0, . . . , yDzB). (28)

After j timesteps, Y evolves into �j(Y) := {�j(y1),�
j (y2), . . . ,�

j (yD)}. Since � is an
automorphism, �j (Y) is a partition of unit; then, one refines �j(Y), 0 � j � n − 1 into a
larger partition of unit

Y [0,n−1] := �n−1(Y) ◦ �n−2(Y) ◦ · · · ◦ �(Y) ◦ Y · (29)

We shall denote the typical element of [Y [0,n−1]] by

[Y [0,n−1]]i = �n−1
(
yin−1

)
�n−2

(
yin−2

) · · ·� (yi1

)
yi0 . (30)

Each refinement is in turn associated with a density matrix ρ
[0,n−1]
Y := ρ[Y [0,n−1]] which is a

state on the algebra M[0,n−1]
D := ⊗n−1

	=0(MD)	, with entries

[ρ[Y [0,n−1]]]i,j := ω
(
y∗

j0
�
(
y∗

j1

) · · · �n−1
(
y∗

jn−1
yin−1

) · · ·� (yi1

)
yi0

)
. (31)

Moreover each refinement has an entropy

Hω[Y [0,n−1]] = − Tr(ρ[Y [0,n−1]] log ρ[Y [0,n−1]]). (32)

The states ρ
[0,n−1]
Y are compatible: ρ

[0,n−1]
Y �M[0,n−2]

D = ρ
[0,n−2]
Y , and define a global state ρY

on the quantum spin chain M∞
D := ⊗∞

	=0(MD)	.
Then, as in the previous section, it is possible to associate with the quantum dynamical sys-

tem (M, ω,�) a symbolic dynamics which amounts to the right-shift, σ : (MD)	 �→ (MD)	+1,
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along the quantum spin half-chain (compare (21)). Non-commutativity makes ρY not shift-
invariant, in general [12]. In this case, the existence of a limit as in (17) is not guaranteed and
one has to define the ALF-entropy of (M, ω,�) as

hALF
ω,M0

(�) := sup
Y⊂M0

hALF
ω,M0

(�,Y) (33a)

where

hALF
ω,M0

(�,Y) := lim sup
n

1

n
Hω[Y [0,n−1]]. (33b)

Like the metric entropy of a partition E , the ALF-entropy of a partition of unit Y can also
be physically interpreted as an asymptotic entropy production relative to a specific coarse-
graining.

Remark 4.2. The ALF-entropy reduces to the Kolmogorov metric entropy on classical
systems. This is best seen by using an algebraic characterization of (X , µ, Tα) by means of
the von Neumann algebra MX = L∞

µ (X ) of essentially bounded functions on X [20]. The
characteristic functions of measurable subsets of X constitute a ∗subalgebra M0 ⊆ MX ;
moreover, given a partition E of X , the characteristic functions eE	

of its atoms E	,
ZE = {eE1 , . . . , eED

}
is a partition of unit in M0. From (3) it follows that �

j
α

(
eE	

) = e
T

−j
α (E	)

and from (2) that
[
ρ
[
Z [0,n−1]

E
]]

i,j
= δi,jµi (see (15)), whence Hω

[
Z [0,n−1]

E
] = Sµ(E[0,n−1])

(see (16) and (27)). In such a case, the lim sup in (33b) is actually a true limit and yields (17).
In [14], the same result is obtained by means of the algebra AX and of the ∗subalgebra Wexp

of exponential functions.

4.1. ALF-entropy for discretized (X , µ, Tα)

We now return to the classical systems (AX , ωµ,�α) of section 2. For later use, we introduce
the following map defined on the torus T

2([0, N)2), namely [0, N)2 (mod N), and on its
subset (Z/NZ)2:

T
2([0, N)2) � x �→ Uα(x) := NTα

( x

N

)
∈ T

2([0, N)2). (34)

The use of the ∗morphisms JN,∞ and J∞,N , introduced in section 2.1, makes it convenient to
define the discretized versions of (AX , ωµ,�α) as follows:

Definition 4.1. A discretization of (AX , ωµ,�α) is the triplet (DN2(C), ωN2 , �̃α) where

• DN2(C) is the Abelian algebra of diagonal matrices acting on C
N2

.
• ωN2 is the tracial state given by the expectation:

DN2(C) � M �→ ωN2(M) := 1

N2
Tr(M). (35)

• �̃α is the ∗automorphism of DN2(C) defined by

DN2(C) � M �→ �̃α(M) :=
∑

�∈(Z/NZ)2

MUα(�),Uα(�)|�〉〈�|. (36)

Remark 4.3.

(i) The expectation ωN2(JN,∞(f )) corresponds to the numerical calculation of the integral
of f realized on a N × N grid on T

2.
(ii) �̃α is a ∗automorphism because the map (Z/NZ)2 � � �−→ Uα(�) is a bijection. For the

same reason the state ωN2 is �̃α-invariant.
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(iii) One can check that, given f ∈ AX ,

�̃α(JN,∞(f )) :=
∑

�∈(Z/NZ)2

f

(
Uα(�)

N

)
|�〉〈�|. (37)

(iv) Also, �̃
j
α ◦ JN,∞ = JN,∞ ◦ �

j
α for all j ∈ Z.

(v) In contrast, for j ∈ N, �̃
j
α ◦ JN,∞ �= JN,∞ ◦ �

j
α for the sawtooth maps, that is when

α �∈ Z.

The automorphism �̃α can be rewritten in the more familiar form

�̃α(X) =
∑

�∈(Z/NZ)2

XUα(�),Uα(�)|�〉〈�|

=
∑

U−1
α (s)∈(Z/NZ)2

Xs,s

∣∣U−1
α (s)

〉〈
U−1

α s
∣∣

(see remark 4.4, (i) and (ii)) = Uα,N


 ∑

all equiv.
classes

Xs,s|s〉〈s|


U ∗

α,N (38)

= Uα,NXU ∗
α,N (39)

where the operators Uα,N are defined by

HN2 � |�〉 �−→ Uα,N |�〉 := ∣∣U−1
α (�)

〉
. (40)

Remark 4.4.

(i) All of Tα, T −1
α , T t

α and
(
T −1

α

)t
belong to SL2 (Z/NZ); in particular these matrices are

automorphisms on (Z/NZ)2 so that, in (38), one can sum over the equivalence classes.
(ii) The same argument as before proves that the operators in (40) are unitary which is

equivalent to saying that �̃α is a ∗automorphism.

In order to construct the ALF-entropy, we now seek a useful partition of unit in (DN2 , ωN2 , �̃α);
we do that by means of the subalgebra W∞ ⊆ AX in equations (5) and (6):

Y := {yj }Dj=1 =
{

1√
D

exp(2π irj ·x)

}D

j=1

(41)

where

{rj }Dj=1 =: � ⊂ (Z/NZ)2. (42)

Definition 4.2. Given a subset � of the lattice consisting of the points {rj } as in (42), we shall
denote by Ỹ the partition of unit in (DN2 , ωN2 , �̃α) given by

Ỹ = {ỹj }Dj=1 := {JN,∞(yj )}Dj=1 =
{

1√
D

W̃(rj )

}D

j=1

(43)

with W̃ (rj ) defined in (9).

From the above definition, the elements of the refined partitions in (30) take the form

[Ỹ [0,n−1]]i = 1

N

1

D
n
2

∑
�∈(Z/NZ)2

exp

(
2π i

N

[
rin−1 · Un−1

α (�) + · · · + ri1 · Uα(�) + ri0 · �
]) |�〉〈�|.

(44)
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Then, the multitime correlation matrix ρ
[0,n−1]
Ỹ in (31) has entries

[ρ[Ỹ [0,n−1]]]i,j = 1

N2

1

Dn

∑
�∈(Z/NZ)2

exp


2π i

N

n−1∑
p=0

(
rip − rjp

) · Up
α (�)


 U 0

α(�) = 1

(45)

=
∑

�∈(Z/NZ)2

〈i|g�(n)〉〈g�(n)|j〉 (46)

with

〈i|g�(n)〉 := 1

N

1

D
n
2

exp


2π i

N

n−1∑
p=0

rip · Up
α (�)


 ∈ C

Dn

. (47)

The density matrix ρ
[0,n−1]
Ỹ can now be used to numerically compute the ALF-entropy

as in (33); however, the large dimension (Dn × Dn) makes the computational problem very
hard, a part for small numbers of iterations. Our goal is to prove that another matrix (of fixed
dimension N2 × N2) can be used instead of ρ

[0,n−1]
Ỹ .

Proposition 4.1. Let G(n) be the N2 × N2 matrix with entries

G�1,�2(n) := 〈
g�2(n)

∣∣ g�1(n)
〉

(48)

given by the scalar products of the vectors |g�(n) 〉 ∈ HDn = C
Dn

in (47). Then, the entropy
of the partition of unit Ỹ [0,n−1] with elements (43) is given by

HωN2

[
Ỹ [0,n−1]

] = −TrHN2 (G(n) logG(n)). (49)

Proof. G(n) is Hermitian and from (47) it follows that TrHN2G(n) = 1.

Let HN2 = C
N2

, H := HDn ⊗ HN2 and consider the projection ρψ = |ψ〉〈ψ | onto

H � |ψ〉 :=
∑

�∈(Z/NZ)2

|g�(n)〉 ⊗ |� 〉 . (50)

We denote by �1 the restriction of ρψ to the full matrix algebra M1 := MDn(C) and by �2 the
restriction to M2 := MN2(C). It follows that

TrHDn (�1 · m1) = 〈ψ | m1 ⊗ 112|ψ〉 =
∑

�∈(Z/NZ)2

〈g� | m1 |g� 〉 ∀m1 ∈ M1.

Thus, from (46),

�1 = ρ
[0,n−1]
Ỹ =

∑
�∈(Z/NZ)2

|g�(n)〉〈g�(n)|. (51)

On the other hand, from

TrH
N2 (�2 · m2) = 〈ψ |111 ⊗ m2|ψ〉

=
∑

�1,�2∈(Z/NZ)2

〈
g�2(n)

∣∣ g�1(n)
〉 〈�2|m2|�1〉 ∀m2 ∈ M2

it turns out that �2 = G(n), whence the result follows from Araki–Lieb’s inequality [21].
�

We now return to the explicit computation of the density matrix G(n) in proposition 4.1.
By using the transposed matrix T tr

α , the vectors (47) now read

〈i|g�(n)〉 = 1

ND
n
2

exp

(
2π i

N
� · f (n),N

�,α (i)

)
(52)
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f (n),N
�,α (i) :=

n−1∑
p=0

(
T tr

α

)p
rip (mod N) (53)

where we made explicit the various dependences of (53) on n the time-step, N the inverse
lattice spacing, the chosen set � of rj and the α parameter of the dynamics in SL2(Z/NZ)2.

In the following we shall use the equivalence classes

[r] := {i ∈ �
(n)
D

∣∣f (n),N
�,α (i) ≡ r ∈ (Z/NZ)2 (mod N)

}
(54)

their cardinalities #[r] and, in particular, the frequency function ν
(n),N
�,α

(Z/NZ)2 � r �−→ ν
(n),N
�,α (r) := #[r]

Dn
. (55)

Proposition 4.2. The von Neumann entropy of the refined (exponential) partition of unit up to
time n − 1 is given by

HωN2 [Ỹ [0,n−1]] = −
∑

r∈(Z/NZ)2

ν
(n),N
�,α (r) log ν

(n),N
�,α (r). (56)

Proof. Using (52), the matrix G(n) in proposition 4.1 can be written as

G(n) = 1

Dn

∑
i∈�n

D

|fi(n)〉〈fi(n)| (57)

〈�|fi(n)〉 = 1

N
exp

(
2π i

N
f (n),N

�,α (i) · �

)
. (58)

The vectors |fi(n)〉 ∈ HN2 = C
N2

are such that 〈fi(n)|fj(n)〉 = δ
(N)

f (n),N
�,α (i),f (n),N

�,α (j)
, where δ(N)

is the N-periodic Kronecker delta. For the sake of simplicity, we say that |fi(n) 〉 belongs to
the equivalence class [r] in (54) if i ∈ [r]; vectors in different equivalence classes are thus
orthogonal, whereas those in the same equivalence class [r] are such that

〈�1|

∑

i∈[r]

|fi(n)〉〈fi(n)|

 |�2 〉 = 1

N2

∑
i∈[r]

exp

(
2π i

N
f (n),N

�,α (i) · (�1 − �2)

)

= Dnν
(n),N
�,α (r)〈�1|e(r)〉〈e(r)|�2〉

〈�| e(r)〉 = exp
(

2π i
N

r · �
)

N
∈ HN2 .

Therefore, the result follows from the spectral decomposition

G(n) =
∑

r∈(Z/NZ)2

ν
(n),N
�,α (r)|e(r)〉〈e(r)|. �

5. Analysis of entropy production

In agreement with the intuition that finitely many states cannot sustain any lasting entropy
production, the ALF-entropy is indeed zero for such systems [12]. However, this does not
mean that the dynamics may not be able to show a significant entropy rate over finite intervals
of time, these being typical of the underlying dynamics.



Quantum dynamical entropies in discrete classical chaos 117

As already observed in the introduction, in quantum chaos one deals with quantized
classically chaotic systems; there, one finds that classical and quantum mechanics are both
correct descriptions over times scaling with log h̄−1. Therefore, the classical–quantum
correspondence occurs over times much smaller than the Heisenberg recursion time that
typically scales as h̄−α, α > 0. In other words, for quantized classically chaotic systems, the
classical description has to be replaced by the quantum one much sooner than for integrable
systems.

In this paper, we are considering not the quantization of classical systems, but
their discretization; nevertheless, we have seen that, in certain respects, quantization and
discretization are similar procedures with the inverse of the number of states N playing the
role of h̄ in the latter case.

We are then interested in studying how the classical continuous behaviour emerges from
the discretized one when N → ∞; in particular, we want to investigate the presence of
characteristic time scales and of ‘breaking-times’ τB , namely those times beyond which the
discretized systems cease to produce entropy because their granularity takes over and the
dynamics reveals in full its regularity.

Propositions 4.1 and 4.2 afford useful means to attack such a problem numerically. In the
following, we shall be concerned with the time behaviour of the entropy of partition of units
as in definition 4.2, the presence of breaking-times τB(�,N, α), and their dependence on the
set �, on the number of states N and on the dynamical parameter α.

As we shall see, in many cases τB depends quite heavily on the chosen partition of unit;
we shall then try to cook up a strategy to find a τB as stable as possible upon variation of
partitions, being led by the idea that the ‘true’ τB has to be strongly related to the Lyapounov
exponent of the underlying continuous dynamical system.

Equations (49) and (56) allow us to compute the von Neumann entropy of the state
ρ

[0,n−1]
Ỹ ; if we were to compute the ALF-entropy according to the definitions (33), the result

would be zero, in agreement with the fact that the Lyapounov exponent for a system with a
finite number of states vanishes. Indeed, it is sufficient to note that the entropy Hω

N2 [Ỹ [0,n−1]]
is bounded from above by the entropy of the tracial state 1

N2 11N2 , that is by 2 log N ; therefore
the expression

hω
N2 ,W∞(α,�, n) := 1

n
Hω

N2 [Ỹ [0,n−1]] (59)

goes to zero with n −→ 0. It is for this reason that, in the following, we will focus on
the temporal evolution of the function hωN2 ,W∞(α,�, n) instead of taking its lim sup over the
number of iterations n.

In the same spirit, we will not take the supremum of (59) over all possible partitions
Ỹ (originated by different �); instead, we will study the dependence of hωN2 ,W∞(α,�, n)

on different choices of partitions. In fact, if we vary over all possible choices of partitions
of unit, we could choose � = (Z/NZ)2 in (42), that is D = N2; then summation over all
possible r ∈ (Z/NZ)2 would make the matrix elements G�1,�2(n) in (48) equal to

δ�1 ,�2
N2 , whence

HωN2 [Ỹ [0,n−1]] = 2 log N .

5.1. The case of Tα ∈ GL2(T
2)

The maximum of Hω
N2 is reached when the frequencies (55)

ν
(n),N
�,α : (Z/NZ)2 �→ [0, 1]
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become equal to 1/N2 over the torus: we will see that this is indeed what happens to the
frequencies ν

(n),N
�,α with n −→ ∞. The latter behaviour can be reached in various ways

depending on

• hyperbolic or elliptic regimes, namely on the dynamical parameter α;
• number of elements (D) in the partition �;
• mutual location of the D elements ri in �.

For later use we introduce the set of grid points with non-zero frequencies

�
(n),N
�,α :=

{
�

N

∣∣∣∣� ∈ (Z/NZ)2, ν
(n),N
�,α (�) �= 0

}
. (60)

5.1.1. Hyperbolic regime with D randomly chosen points ri in �. In the hyperbolic regime
corresponding to α ∈ Z \ {−4,−3,−2,−1, 0} , �

(n),N
�,α tends to increase its cardinality with

the number of timesteps n. Roughly speaking, there appear to be two distinct temporal patterns:
a first one, during which #

(
�

(n),N
�,α

) � Dn � N2 and almost every ν
(n),N
�,α � D−n, followed

by a second one characterized by frequencies frozen to ν
(n),N
�,α (�) = 1

N2 ,∀� ∈ (Z/NZ)2. The

second temporal pattern is reached when, during the first one, �
(n),N
�,α has covered the whole

lattice and Dn � N2.
From the point of view of the entropies, the first temporal regime is characterized by

Hω
N2 (α,�, n) ∼ n · log D hω

N2 ,W∞(α,�, n) ∼ log D

while the second one by

HωN2 (α,�, n) ∼ 2 log N hωN2 ,W∞(α,�, n) ∼ 2 log N

n
.

The transition between these two regimes occurs at n̄ = logDN2. However, this time cannot
be considered a realistic breaking-time, as it too strongly depends on the chosen partition.

Figure 2 (columns (a and (c)) shows the mechanism clearly in a density plot: white or
light-grey points correspond to points of �

(n),N
�,α and their number increases for small numbers

of iterations until the plot assumes a uniform grey colour for large n.
The linear and stationary behaviour of HωN2 (α,�, n) is apparent in figure 4, where four

different plateaus (2 log N) are reached for four different N, and in figure 5, in which four
different slopes are shown for four different numbers of elements in the partition. With
the same parameters as in figure 5, figure 6 shows the corresponding entropy production
hωN2 ,W∞(α,�, n).

5.1.2. Hyperbolic regime with D nearest neighbours ri in �. In the following, we will
consider a set of points � = {ri}i=1...D very close to each other, instances of which are shown
in figure 1.

From equations (54) and (55), the frequencies ν
(n),N
�,α (�) result proportional to how many

strings have equal images �, through the function f (n),N
�,α in (53). Due to the fact that

[Tα]11 = [Tα]21 = 1, non-injectivity of f (n),N
�,α occurs very frequently when {ri} are very

close to each other. This is a dynamical effect that, in continuous systems [14], leads to an
entropy production approaching the Lyapounov exponent. Even in the discrete case, during a
finite time interval though, hωN2 ,W∞(α,�, n) exhibits the same behaviour until HωN2 reaches
the upper bound 2 log N . From then on, the system behaves as described in section 5.1.1, and
the entropy production goes to zero as

hωN2 ,W∞(α,�, n) ∼ 1

n
(see figure 7).
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D = 5 D = 4 D = 3 D = 2

Figure 1. Several combinations of D nearest neighbours in � for different values D.

n α = 1 α = −2 α = 17
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Figure 2. Density plots showing the frequencies ν
(n),N
�,α in two hyperbolic regimes (columns (a)

and (c)) and an elliptic one (column (b)), for five randomly distributed ri in � with N = 200. Black
corresponds to ν

(n),N
�,α = 0. In the hyperbolic cases, ν

(n),N
�,α tends to equidistribute on (Z/NZ)2

with increasing n and becomes constant when the breaking-time is reached.

Concerning figure 3 (column (d)), whose corresponding graph for hωN2 ,W∞(1,�, n) is labelled
by � in figure 7, we make the following consideration:
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α α α α α α

(d) (e) (f) (d) (e) (f)
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Figure 3. Density plots showing ν
(n),N
�,α in two hyperbolic (columns (d) and (f )) and one elliptic

(column (e)) regime, for five nearest neighbouring ri in � (N = 200). Black corresponds to
ν

(n),N
�,α = 0. When the system is chaotic, the frequencies tend to equidistribute on (Z/NZ)2 with

increasing n and to approach, when the breaking-time is reached, the constant value 1
N2 . Column

(f) shows how the dynamics can be confined on a sublattice by a particular combination (α,N, �)

with a corresponding entropy decrease.

• for n = 1 the white spot corresponds to five ri grouped as in figure 1. In this case
hωN2 ,W∞(1,�, 1) = log D = log 5;

• for n ∈ [2, 5] the white spot begins to stretch along the stretching direction of T1. In
this case, the frequencies ν

(n),N
�,α are not constant on the light-grey region: this leads to a

decrease of hωN2 ,W∞(1,�, n);
• for n ∈ [6, 10] the light-grey region becomes so elongated that it starts feeling the folding

condition so that, with increasing timesteps, it eventually fully covers the originally dark
space. In this case, the behaviour of hωN2 ,W∞(1,�, n) remains the same as before up to
n = 10;

• for n = 11, �
(n),N
�,α coincides with the whole lattice;
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Figure 4. Von Neumann entropy Hω
N2 (n) in four hyperbolic (α = 1 for ♦, �, ◦, �) and four

elliptic (α = −2 for �) cases, for three randomly distributed ri in �. Values for N are: ♦ = 500,
� = 400,◦ = 300 and � = 200, whereas the curve labelled by � represents four elliptic systems
with N ∈ {200, 300, 400, 500}.
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Figure 5. Von Neumann entropy Hω
N2 (n) in four hyperbolic (α = 1) cases, for D randomly

distributed ri in �, with N = 200. Value for D are: ♦ = 5, � = 4, ◦ = 3 and � = 2. The dotted
line represents Hω

N2 (n) = log λ · n, where log λ = 0.962 . . . is the Lyapounov exponent at α = 1.
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Figure 6. Entropy production hω
N2 ,W∞(α, �, n) in four hyperbolic (α = 1) cases, for D randomly

distributed ri in �, with N = 200. Values for D are: ♦ = 5, � = 4, ◦ = 3 and � = 2. The
dotted line corresponds to the Lyapounov exponent log λ = 0.962 . . . at α = 1.
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Figure 7. Entropy production hω
N2 ,W∞(α,�, n) in five hyperbolic (α = 1) cases, for D nearest

neighbouring points ri in �. Values for (N, D) are: � = (200, 5) , ♦ = (500, 3), � = (400, 3),◦ = (300, 3) and � = (200, 3). The dotted line corresponds to the Lyapounov exponent
log λ = 0.962 . . . at α = 1 and represents the natural asymptote for all these curves in the absence
of breaking-time.
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• for larger times, the frequencies ν
(n),N
�,1 tend to the constant value 1

N2 at almost every point
of the grid. In this case, the behaviour of the entropy production undergoes a critical
change (the crossover occurring at n = 11) as shown in figure 7.

Again, we cannot conclude that n = 11 is a realistic breaking-time, because once more we
have strong dependence on the chosen partition (namely from the number D of its elements).
For instance, in figure 7, one can see that partitions with three points reach their corresponding
‘breaking-times’ faster than that with D = 5; also they do it in an N-dependent way.

For a chosen set � consisting of D elements very close to each other and N very large,
hω

N2 ,W∞(α,�, n) � log λ (which is the asymptote in the continuous case) from a certain n̄ up
to a time τB . Since this latter is now partition independent, it can properly be considered as
the breaking-time of the system; it is given by

τB = logλN
2. (61)

It is evident from equation (61) that if one knows τB then also log λ is known. Usually, one
is interested in the latter which is a sign of the instability of the continuous classical system.
In the following, we develop an algorithm which allows us to extract log λ from studying the
corresponding discretized classical system and its ALF-entropy.

In working conditions, N is not large enough to allow for n̄ being smaller than τB ;
what happens in such a case is that HωN2 (α,�, n) � 2 log N before the asymptote for
hωN2 ,W∞(α,�, n) is reached. Given hωN2 ,W∞(α,�, n) for n < τB , it is thus necessary to
seek means how to estimate the long time behaviour that one would have if the system were
continuous.

Remark 5.1. When estimating Lyapounov exponents from discretized hyperbolic classical
systems, by using partitions consisting of the nearest neighbours, we have to take into account
some facts:

(a) hω
N2 ,W∞(α,�, n) does not increase with n; therefore, if D < λ, hω

N2 ,W∞ cannot reach the
Lyapounov exponent. Denoted by log λ(D) the asymptote that we extrapolate from the
data4, in general we have λ(D) � log D < λ. For instance, for α = 1, λ = 2.618 . . . > 2
and partitions with D = 2 cannot produce an entropy greater than log 2; this is the case
for the entropies below the dotted line in figures 5 and 6;

(b) partitions with D small but greater than λ allow log λ to be reached in a very short time
and λ(D) is very close to λ in this case;

(c) partitions with D � λ require a very long time to converge to log λ (and so very large
N) and, moreover, it is not a trivial task to deal with them from a computational point of
view. In contrast, the entropy behaviour for such partitions offers very good estimates of
λ (compare, in figure 7, � with ♦, �, ◦ and �);

(d) in order to compute λ (and then τB , by (61)), one can calculate λ(D) for increasing D,
until it converges to a stable value λ;

(e) due to a number of theoretical reasons, the UMG on (Z/NZ)2 present several anomalies.
An instance of them is shown in figure 3 (column (f )), where a partition with five nearest
neighbours on a lattice of 200 × 200 points confines the image of f (n),N

�,α (under the action
of a Tα map with α = 17) on a subgrid of the torus. In this and analogous cases, there
occurs an anomalous depletion of the entropy production and no significant information
is obtainable from it. To avoid these difficulties, in section 5.2 we will go beyond the
UMG subclass considered so far.

4 hω
N2 ,W∞(α,�, n) may even equal log λ(D) from the start.
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Figure 8. Von Neumann entropy Hω
N2 (n) in four elliptic (α = −2) cases, for D randomly

distributed ri in �, with N = 200. Values for D are: ♦ = 5, � = 4, ◦ = 3 and � = 2.

5.1.3. Elliptic regime (α ∈ {−1,−2,−3}). One can show that all evolution matrices Tα are
characterized by the following property:

T 2
α = ᾱTα − 11 ᾱ := (α + 2). (62)

In the elliptic regime α ∈ {−1,−2,−3}, therefore ᾱ ∈ {−1, 0, 1} and relation (62) determines
a periodic evolution with periods:

T 3
−1 = −11

(
T 6

−1 = 11
)

(63a)

T 2
−2 = −11

(
T 4

−2 = 11
)

(63b)

T 3
−3 = +11. (63c)

It has to be stressed that, in the elliptic regime, the relations (63) do not hold ‘modulo N’,
instead they are completely independent of N.

Due to the high degree of symmetry in relations (62), (63), the frequencies ν
(n),N
�,α are

different from zero only on a small subset of the whole lattice.
This behaviour is apparent in figure 2 column (b), in which we consider five randomly

distributed ri in �, and in figure 3 column (e), in which the five ri are grouped as in
figure 1. In both cases, the von Neumann entropy HωN2 (n) is not linearly increasing with n
(see figure 8), instead it assumes a log-shaped profile (up to the breaking-time, see figure 4).

Remark 5.2. The last observation indicates how the entropy production analysis can be used
to recognize whether a dynamical system is hyperbolic or not. If we use randomly distributed
points as a partition, we observe that hyperbolic systems show constant entropy production
(up to the breaking-time), whereas the others do not.

Moreover, unlike hyperbolic ones, elliptic systems do not change their behaviour with N
(for reasonably large N) as clearly shown in figure 4, in which elliptic systems (α = −2) with
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four different values of N give the same plot. In contrast, we have a dependence on how rich
is the chosen partition, similarly to what we have for hyperbolic systems, as shown in figure 7.

5.1.4. Parabolic regime (α ∈ {0, 4}). This regime is characterized by λ = λ−1 = ±1, that is
log |λ| = 0 (see remark 2.1 (c)). These systems behave as hyperbolic ones (see sections 5.1.1
and 5.1.2) and this is also true for the general behaviour of the entropy production, apart from
the fact that we never fall in condition (a) of remark 5.1. Then, for sufficiently large N, every
partition consisting of D grouped ri will reach the asymptote log |λ| = 0.

5.2. The case of sawtooth maps

The sawtooth maps [15, 16] are triples (X , µ, Sα) where

X = T
2 = R

2/Z
2 = {x = (x1, x2) (mod 1)} (64a)

Sα

(
x1

x2

)
=
(

1 + α 1
α 1

)(〈x1〉
x2

)
(mod 1) α ∈ R (64b)

dµ(x) = dx1 dx2 (64c)

where 〈·〉 denotes the fractional part of a real number. Without 〈·〉, (64b) is not well
defined on T

2 for non-integer α; in fact, without taking the fractional part, the same point
x = x + n ∈ T

2,n ∈ Z
2, would have (in general) Sα(x) �= Sα(x + n). Of course, 〈·〉 is not

necessary when α ∈ Z.
The Lebesgue measure defined in (64c) is invariant for all α ∈ R. After identifying x

with canonical coordinates (q, p) and imposing the (mod 1) condition on both of them, the
above dynamics can be rewritten as{

q ′ = q + p′

p′ = p + α〈q〉 (mod 1). (65)

This is nothing but the Chirikov standard map [4] in which − 1
2π

sin(2πq) is replaced by 〈q〉.
The dynamics in (65) can also be thought of as generated by the (singular) Hamiltonian

H(q, p, t) = p2

2
− α

〈q〉2

2
δp(t) (66)

where δp(t) is the periodic Dirac delta which makes the potential act through periodic kicks
with period 1.

Sawtooth maps are invertible and the inverse is given by the expression

S−1
α

(
x1

x2

)
=
(

1 0
−α 1

) 〈(
1 −1
0 1

)(
x1

x2

)〉
(mod 1) (67)

or, in other words,{
q = q ′ − p′

p = −αq + p′ (mod 1). (68)

It can indeed be checked that Sα

(
S−1

α (x)
) = S−1

α (Sα(x)) = 〈x〉,∀x ∈ T
2.

Remark 5.3.

(i) Sawtooth maps {Sα} are discontinuous on the subset γ0 := {x = (0, p), p ∈ T} ∈ T
2:

two points close to this border, A := (ε, p) and B := (1 − ε, p), have images that differ,
in the ε → 0 limit, by a vector d

(1)

Sα
(A,B) = (α, α) (mod 1).
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(ii) Inverse sawtooth maps
{
S−1

α

}
are discontinuous on the subset γ−1 := Sα(γ0) = {x =

(p, p), p ∈ T} ∈ T
2: two points close to this border, A := (p + ε, p − ε) and

B := (p − ε, p + ε), have images that differ, in the ε → 0 limit, by a vector
d

(1)

S−1
α

(A,B) = (0, α) (mod 1).
(iii) The hyperbolic, elliptic or parabolic behaviour of sawtooth maps is related to the

eigenvalues of
( 1+α 1

α 1

)
exactly as in remark 2.1 (ii).

(iv) The Lebesgue measure in (64c) is S−1
α -invariant.

From a computational point of view, the study of the entropy production in the case of sawtooth
maps Sα is more complicated than for the Tα . The reason to study these dynamical systems
numerically is twofold:

• to avoid the difficulties described in remark 5.1 (e);
• to deal, in a way compatible with numerical computation limits, with the largest possible

spectrum of accessible Lyapounov exponent. We know that for α ∈ Z
⋂

{non-elliptic
domain},

λ±(Tα) = λ±(Sα) = α + 2 ±
√

(α + 2)2 − 4

2
.

In order to fit log λα (log λα being the Lyapounov exponent corresponding to a given α)
via entropy production analysis, we need D elements in the partition (see points (b) and
(c) of remark 5.1) with D � λα . Moreover, if we were to study the power of our method
for different integer values of α we would be forced to use very large D, in which case
we would need very long computing times in order to evaluate numerically the entropy
production hω

N2 ,W∞(α,�, n) in a reasonable interval of times n. Instead, for sawtooth
maps, we can fix the parameters (N,D,�) and study λα for α confined in a small domain,
but free to assume every real value in that domain.

In the following, we investigate the case of α in the hyperbolic regime with D nearest
neighbours ri in �, as done in section 5.1.2. In particular, figures 9–12 refer to the following
fixed parameters:

N = 38 nmax = 5 D = 5

� : r1 =
(

7
8

)
r2 =

(
7
9

)
r3 =

(
6
8

)
r4 =

(
7
7

)
r5 =

(
8
8

)
;

α : from 0.00 to 1.00 with an incremental step of 0.05.

First, we compute the von Neumann entropy (49) using the (Hermitian) matrix G�1,�2(n)

defined in (48). This is actually a diagonalization problem: once the N2 eigenvalues {ηi}N2

i=1
are found, then

HωN2 [Ỹ [0,n−1]] = −
N2∑
i=1

ηi log ηi. (69)

Then, from (59), we can determine hωN2 ,W∞(α,�, n). In the numerical example, the
(�-dependent) breaking-time occurs after n = 5; for this reason we have chosen nmax = 5. In
fact, we are interested in the region where the discrete system behaves almost as a continuous
one.

In figure 9, the entropy production is plotted for the chosen set of α: for very large N (that
is close to the continuum limit, in which no breaking-time occurs) all curves (characterized
by different α) would tend to log λα with n.
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Figure 9. Entropy production hω
N2 ,W∞ (α,�, n) for 21 hyperbolic sawtooth maps, relative to

a for a cluster of five nearest neighbourings points ri in �, with N = 38. The parameter α

decreases from α = 1.00 (corresponding to the upper curve) to α = 0.00 (lower curve) through 21
equispaced steps.

One way to determine the asymptote log λα is to fit the decreasing function
hωN2 ,W∞(α,�, n) over the range of data and extrapolate the fit for n → ∞. Of course,
we cannot perform the fit with polynomials, because every polynomial diverges in the n → ∞
limit.

A better strategy is to compactify the time evolution by means of a isomorphic positive
function s with bounded range, for instance,

N � n �−→ sn := 2

π
arctan(n − 1) ∈ [0, 1]. (70)

Then, for fixed α, in figure 10 we consider nmax points
(
sn, hωN2 ,W∞(α,�, n)

)
and extract the

asymptotic value of hω
N2 ,W∞(α,�, n) for n → ∞, that is the value of hω

N2 ,W∞(α,�, s−1(t))

for t → 1−, as follows.
Given a graph consisting of m ∈ {2, 3, . . . , nmax} points, in our case the first m points of

curves as in figure 10, namely{(
s1, hωN2 ,W∞(α,�, 1)

)
,
(
s2, hωN2 ,W∞(α,�, 2)

)
, . . . ,

(
sm, hωN2 ,W∞(α,�,m)

)}
the data are fit by a Lagrange polynomial Pm (t) (of degree m − 1)

Pm(t) =
m∑

i=1

Pi(t) (71a)

where

Pi(t) =
m∏

j=1
j �=i

t − sj

si − sj

hω
N2 ,W∞(α,�, i). (71b)
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Figure 10. The solid lines correspond to (sn, hω
N2 ,W∞ (α,�, n)), with n ∈ {1, 2, 3, 4, 5}, for the

values of α considered in figure 9. Every α-curve is continued as a dotted line up to (1, l5
α), where

l5
α is the Lyapounov exponent extracted from the curve by fitting all five points via a Lagrange

polynomial Pm(t).
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Figure 11. Four estimated Lyapounov exponents lmα plotted versus their degree of accuracy m for
the values of α considered in figures 9 and 10.

The value assumed by this polynomial when t → 1− (corresponding to n → ∞) will be the
estimate (of degree m) of the Lyapounov exponent, denoted by lmα : the higher the value of m,
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Figure 12. Plots of the four estimated Lyapounov exponents lmα of figure 11 versus the considered
values of α. The polynomial degree m is as follows: ♦ = 2, � = 3, ◦ = 4 and � = 5. The solid
line corresponds to the theoretical Lyapounov exponent log λα = log (α + 2 +

√
α (α + 4))− log 2.

the more accurate the estimate. From (71) we get

lmα := Pm(t)|t=1 =
m∑

i=1

hωN2 ,W∞(α,�, i)

m∏
j=1
j �=i

1 − sj

si − sj

. (72)

The various lmα are plotted in figure 11 as functions of m for all considered α. The convergence
of lmα with m is shown in figure 12, together with the theoretical Lyapounov exponent log λα;
as expected, we find that the latter is the asymptote of

{
lmα
}

m
with respect to the polynomial

degree m.
The dotted line in figure 10 extrapolates 21 α-curves in compactified time up to t = 1

using five points in the Lagrange polynomial approximation.

6. Conclusions

In this paper, we have considered discretized hyperbolic classical systems on the torus by
forcing them on a squared lattice with spacing 1

N
. We showed how the discretization procedure

is similar to quantization; in particular, following the analogous case of the classical limit
h̄ �−→ 0, we have set up the theoretical framework to discuss the continuous limit N �−→ ∞.
Furthermore, using the similarities between discretized and quantized classical systems, we
have applied the quantum dynamical entropy of Alicki and Fannes to study the footprints of
classical (continuous) chaos as it is expected to reveal itself, namely through the presence of
characteristic time scales and corresponding breaking-times. Indeed, exactly as in quantum
chaos, a discretized hyperbolic system can mimic its continuous partner only up to times which
scale as log N . We have also extended the numerical analysis from the so-called Arnold cat
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maps to the discontinuous sawtooth maps, whose interpretation in the theoretical frame set up
in this work will be discussed in a forthcoming paper.
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